I'T OPERATIONAL EXCELLENCE FOR
LIFE SCIENCE MANUFACTURERS

Automated Computer Software
Assurance (ACSA) in 2025

Top players are fully automating the
computer system validation process.

www.leanbiologix.com
(508) 541-6383
inquiries@leanbiologix.com

the computer system validation process

Overview

This document is meant to be used a guide to help life sciences manufacturers to understand
and implement Automated Computer Software Assurance (ACSA).

This guide it NOT a copy-paste reiteration of industry manuals, it has been written from the
perspective of IT leaders and engineers who have experienced the various transformations of
the industry over the last 10 years. It also focuses on the new paradigm of automated testing
solutions including Selenium integrations and ALM solutions.

To give the reader context, sections are included summarizing the principles of computer system
validation (CSV) and GAMP guidance. This book aims to be the go-to resource to senior
leadership, IT Quality & Compliance, system owners, compliance and technical analysts.

Value of

CASE STUDY GAMPS5 Implementation

) Automated .
(click me) Connection

. Examples
Testing P

Section 1: Cost and Value - Implementing Testing Automation

e Explores time & cost savings, provides data insights through case study review
Section 2: Automated Computer Software Assurance (ACSA)

e Details modern ACSA implementation with a step-by-step integration guide
Section 3: EXAMPLE - Regulatory Compliance and Case Study for a CMMS System

e Examines 21 CFR Part 11 requirements and maps them to automated test cases

the computer system validation process

Case Study 1 Details

INDUSTRY RESULTS

Proven Use Case
@

Results
REDUCTION REDUCTION IN
IN TESTING TIME REQUIRED
COSTS FOR TESTING

LeanBiologix has observed the above reductions based off of current client results.

Results - Large (650M+) Medical Device Manufacturer

Effort Hours (yearly)

F

100 150 200

Annually there are 8-10 software patches which
require risk-based regression testing. Each change
takes about 40 hours including risk assessment,
testing, document review and approvals.

Annual Cost (USD)
10000 20000 30000 40000

Initially the annual costs were $40000, after
automated implementation annual cost was reduced
to $16000.

Test Requirement Coverage

0 5 10 15 20 25 30

Test coverage went from 20 requirements run every
month to 28 requirement tests run daily.

To illustrate the impact of automated
testing, let’s examine the following
case study:

Large (650M+) Medical Device Manufacturer

Background: Manufacturer faced challenges in
validating routine monthly equipment management
software updates, which was subject to regulatory
requirements.

Challenge: Manual regression testing was labor-
intensive and lacked full coverage due to
personnel availability.

Solution: They adopted an automated testing
approach with Selenium

Outcome: Regression testing time was cut by
90%, and test coverage increased by 40%. The
automation framework ensured that all regulatory
requirements were met consistently.

the computer system validation process

Case Study Details - continued

Initial Process

A medical device company using multi-tenant SaaS Equipment management system
was tasked with recurring testing on system requirements from frequent monthly
upgrades.

The system has many customized business and functional requirements which require
regression testing, as the software provider cannot confirm if the changes will impact
a specific customers build.

The company therefore had to review each patch, create a test plan and associated
change control documentation, perform testing and then get everything approved on a

monthly cadence.
Review T Review and
Release Approve
Plan
Notes Documents

Before Automated Implementation

Process Improvements

Through implementation of validated automated system testing, the process was
simplified from 4 steps to 2 steps. This lead to savings in cost, time, and an increase in
compliance.

Scheduled Review and

Automated Approve
Runs Report

After Automated Implementation

Outcome - Automated Testing & Test Report Generation for all requirements

LEANBIOLOGIX
System (et Serorie) # Skipped #Falled -
ynamucs Testng 1 0 0 87 2 seconds.
Result Test Case Tost Script start End
Dynamics Testing — passed Automated_Test_1 Automated_Test_Script_1 10025 10152

Dynamics Testing

Test Case Browser URL Test Executor User ID
Automated_Test_1 odge hitps /ibusinesscentral dynamics. com/PnoSignlpCheck=1 neodgers@seanbiologix com
Step # Expected Actual Timestamp

Go to websde hitps /busnesscentral dynamcs com?noSgnUpCheck=1 Websfie access success 29.Mar.24 110030
Cixck oms’ tab toms tab chckod succosshully 29-Mar-24 110039

Chck new record Chicked new record bution 20.Mar-24 110045

a2 W N -

Fill out roquired Hiokds on new record form for ems. Fillod out all roquired fields on new record form for ltems. 29-Mar-24 110100

zleoﬂshd cslusd

5 Take a screenshot ‘ | l 29-Mar:24 11.01.01

the computer system validation process

Chapter1
The Case for Automated Testing

Introduction

In this chapter we explore the benefits of
automated testing, focusing on its impact on time
and cost savings over manual testing.

Automated testing offers a transformative solution
by significantly reducing the time and effort
required to validate a software system while
enhancing the accuracy and reliability of test
results.

By leveraging Automated Computer Software
Assurance (ACSA) practices, organizations can get
the following benefits:

e streamline their testing processes

e ensure regulatory compliance

e achieve a higher standard of quality
e reduce testing resource man hours

Ensuring compliance and maintaining system
integrity are critical tasks for life science
companies.

Traditional manual (electronic and paper-based)
testing methods can also be thorough, but are
often resource-intensive, time-consuming, and
introduce human error. Testing Automation is the
solution.

Value of Automated Testing

Automated testing provides numerous advantages
over manual testing. The primary benefits are:

1.Reduced Testing Time: Automated tests can
be executed much faster than manual tests,
allowing for more frequent and comprehensive
testing cycles. This reduction in testing time
directly translates into faster project completion
and quicker time-to-market for new systems
and updates.

2.Cost Savings: By automating repetitive and
time-consuming tasks, organizations can
significantly reduce the labor costs associated
with manual testing. Automated testing tools,
once set up, can run multiple tests
simultaneously and require minimal human
intervention.

3.Increased Test Coverage: Automated testing
enables broader test coverage by allowing for
the execution of a larger number of tests across
various scenarios and configurations. This
comprehensive coverage helps identify defects
and vulnerabilities that might be missed in
manual testing.

4.lmproved Accuracy and Consistency:
Automated tests eliminate the risk of human
error, ensuring that tests are performed
consistently and accurately each time they are
executed. This reliability is crucial for
maintaining compliance with stringent
regulatory requirements.

5.Enhanced Reporting and Documentation:
Automated testing tools provide detailed
reports and logs of test execution, which are
essential for demonstrating compliance during
audits. These tools also facilitate the generation
of comprehensive documentation, reducing the
burden on project teams.

the computer system validation process

2020s - Automated Testing, Al, and Machine Learning

2020s - Integration of Al and
Machine Learning
o Testing Techniques:

o Specialized testing for
Al/ML models.

o ACSA - Automated Testing
Frameworks: Advanced 4
frameworks for dynamic
continuous testing.

o Algorithm Validation:
Rigorous testing of Al/ML
algorithms.

2018 - FDA’s CSA Initiative
» Testing Techniques:

o Risk-Based and Critical
Thinking: Focus on
critical system aspects.

o Automated Testing and
Continuous Validation:
Streamlined processes
with automation.

2010s - Shift Towards Cloud
Computing
» Testing Techniques:

o Automated Testing:
Increased use of
automated tools for 4
complex cloud systems.

o CI/CD Integration: Testing
integrated into CI/CD
pipelines for frequent and
reliable testing.

Mid-2000s - Introduction of
GAMP 5
» Testing Techniques:
o Risk-Based Testing: Focus
» on high-risk areas as
guided by GAMP 5.
o Traceability Matrices:
Ensure all regulatory
requirements are tested.

Early 2000s - Adoption of 21 CFR
Part 11
» Testing Techniques:
o Manual Testing: Manual
creation and execution of
test cases. 4
o Documentation-Driven
Validation: Extensive
documentation to
demonstrate compliance.

Modern techniques reflect the industry's need for efficient, risk-based, and ultimately
automated testing methods to ensure compliance and product quality.

Automating the computer system validation process

Chapter 2
GAMPS5 (2022) Automated Testing Guidance

GAMPS5 - Improved Guidance for Computer System Validation

The GAMPS5 second edition improved upon the
original edition from 2008 and was released in July
2022.

The updated guide keeps the same structure but
updates its content to highlight the growing area of
cloud services. It also addresses the increasing use
of testing automation software to maintain
compliant systems.

Why revise ISPE GAMP5?

The timing of the new release is important as it
coincides with the release of new FDA guidance
“Computer Software Assurance for Production and
Quality System Software”.

This document provides additional guidance on
validating computer systems. It explains how the
industry should ensure quality in cloud services,
new Al and infrastructure technologies, and
automated system tests.

An important Highlight is the guidance
acknowledgment of automated testing — “Using
automated testing brings benefits to test coverage,
repeatability, and speed.” (Appendix D5 - Testing
of Computerized Systems, section 25.1.1)

New technologies have been added as new
Appendices. These technologies include Artificial
Intelligence and Machine Learning (Al/ML),
blockchain, cloud computing, and Open-Source
Software (OSS).

Key GAMPS5 Updates - Summary:

Modernization and Automation: The update
highlights the integration of IT and cloud services,
and the increased use of automation, aiming to
enhance control, quality, and reduce risks.

Alignment with FDA Guidance: The release
coincides with new FDA guidelines on computer
software assurance, which helps the industry adapt
to cloud services and automated testing.

Acknowledgment of Automated Testing: The
updated guidelines recognize the benefits of
automated testing such as improved test coverage,
repeatability, and speed.

LEAN

Inclusion of New Technologies: Technologies like
Al/ML, blockchain, cloud computing, and open-
source software are now considered, expanding
the scope and applicability of the guidelines.

Modern Approach to GAMP5 Computer System
Validation

Modern methods use data and documents
generated by automated tools instead of
traditional, detailed manual documentation for
specifications and testing.

This approach leverages the capabilities of
software tools to maintain records and information
in a compliant way, and streamlines processes.

Automated Testing and the GAMP5 Test
Management Process

Testing should focus on the system’s intended use,
with a clear link between test cases and
requirements to ensure thorough coverage.

High-risk requirements with regulatory significance
or direct product impact must be scripted for
testing. Automate and reuse these high-risk
scripted tests throughout the system’s life cycle.

Agile development, common in both on-premise
and Saa$S software, allows for automated test
cases to be created alongside code development
or executed after a new version is made ready.

The scope and burden of this additional testing,
depends on the automated tests’ thoroughness.

Scripted testing (manual or automated) focuses on
the software’s intended use as defined by internal
workflows, adjusting for risk levels of each
requirement.

Even with detailed test coverage, there may still be
a need for separate unscripted or scripted tests to

assess end-to-end workflows and specific system

use cases.

Automating the computer system validation process

GAMPS5 (2022) Automated Testing Guidance

Modernizing Software Testing using Critical
Thinking - ISPE GAMP5 Updates

Critical thinking is a crucial component in the
context of the updated ISPE GAMP®5 guidelines
for several reasons explored below. It is necessary
to note that Quality support roles, Compliance
Specialists, and IT Admin should aim to eliminate
unnecessary testing burden.

Summarized straight from the ISPE GAMP 5
guide:

Critical thinking fosters informed decision-making
on applying and scaling quality and compliance for
computerized systems. Success hinges on
understanding business processes and analyzing
their impact on patient safety, product quality, and
data integrity.

Improved risk understanding leads to better risk
control and robust scaling of controls and
validation activities.

Practical Advice from Industry Experts:

Knowing how the business works and how the
system functions is important for making the right
decisions when testing software.

WHO is using the application and HOW the
application being used is core consideration for risk
assessment for functional requirements.

IT Quality and testing departments cannot truly
assess product impact or risk without having a
clear understanding of the process. Visual business
process maps are important for project teams.
They help align everyone at the start of a project,
and make a significant impact.

Coordination with stakeholders and SMEs is
required — but so is the individual compliance
specialists/IT QA resources personal knowledge of
the system and use cases.

SME resources help paint the full picture but they
cannot make the final call on risk level as they often
have roles which introduce a conflict of interest.
For example “This is a low risk because if we assign
it a high risk it's going to increase my workload”.

LEAN

The FDA guidance promotes the idea of minimum
viable coverage (MVC) and emphasizes the
importance of getting it right.

There are several areas impacted by
misunderstanding MVC this including the following:

e Tester takes additional time to write and test in
development

e Reviewers take additional time to review scope
and steps

¢ Increased steps increase the chance of test
script errors or defects during testing

e During execution, the testing timelines increase.

e Reviewers experience increased testing
timelines post-execution.

e Periodic reviewers spend additional time
reviewing the additional scope of testing

e Additional testing increased the burden of SDLC
impact and increases review times

e During an audit, unnecessary steps hide
important details that are not needed.

e Business users spend time doing unnecessary
UAT testing

¢ Increased system downtime affects users and
production schedules.

e Extra work places undue pressure on team
members across the whole organization and
increases project timelines.

The root cause of this can often be traced to a one-
size-fits-all interpretation of compliant software
testing strategy.

One solution is commitment of the project team to
critical thinking and developing a non-superficial
understanding of an application and the work being
done.

Automated testing helps overcome the challenges
of a one-size-fits-all approach to compliant
software testing strategies by ensuring a thorough,
efficient, and standardized testing process. This
enables project teams to achieve a deeper
understanding of the application and work being
done, while also adhering to these MVC principles.

By committing to both critical thinking and
automated testing, teams can enhance their
compliance, reduce unnecessary burdens, and
improve overall project outcomes.

.com

Automating the computer system validation process

GAMPS5 (2022) Automated Testing Guidance

Leveraging Critical Thinking in Implementing
GAMPS Updates

The update aligns with new FDA guidance, which
emphasizes modern approaches like automated
testing and cloud services.

Critical thinking helps stakeholders understand
these changes, evaluate their implications, and
implement them effectively to meet regulatory
requirements.

Adapting to Technological Advancements: With
the integration of emerging technologies critical
thinking allows us to assess how these
technologies can be utilized within the accepted
framework of computerized system validation.

This involves analyzing the risks, benefits, and
potential impacts on quality and compliance.

Optimizing Test Management: The revised
guidelines highlight the importance of linking test
cases to requirements for thorough coverage,
particularly for high-risk functionalities.

Critical thinking aids in discerning which aspects of
the system require more rigorous testing and how

automated tools can be leveraged to enhance test
accuracy, repeatability, and efficiency.

Evolving Validation Strategies: Modern validation
approaches now rely more on data and artifacts
generated by automated tools rather than
extensive manual documentation.

Critical thinking is necessary to evaluate the
adequacy of these automated outputs in proving
system validation and ensuring they meet all
necessary specifications and regulatory standards.

Risk Management: The update to GAMP®5
emphasizes risk-based approaches to testing and
validation, particularly for software directly
affecting product quality or regulatory compliance.

Critical thinking is key in identifying potential risks,
determining their severity, and deciding on the
appropriate level of scripted testing and
automation.

LEAN

Enhancing Agility with Automated Testing

Automated testing can improve development
processes by increasing efficiency, consistency,
and speed. Here's how automated testing can be
leveraged to support Agile methodologies:

Integration: Automated tests can be integrated into
Cl/CD pipelines, allowing for immediate feedback
on code changes. This ensures that new code is
quickly verified for integration issues, bugs, and
compliance with requirements.

Deployment: Automated deployment processes
can rapidly move tested code to production,
reducing the time between development and
release.

Rapid Feedback: Automated tests can be run
frequently, even on each commit, providing rapid
feedback to developers. This helps in identifying
and fixing issues early, reducing the cost and time
associated with bug fixing.

Regression Testing: Automated regression tests
ensure that new changes do not break existing
functionality, maintaining the stability of the
product through continuous development cycles.
Scalability: Automated tests can cover a large
number of test cases, including those that are time-
consuming or complex.

Consistency: Automated tests are consistent in
their execution, reducing the risk of human error
and ensuring reliable results across multiple test
runs.

Automatic Documentation: Automated tests can
generate logs and reports that document the
testing process, providing a clear audit trail for
compliance purposes.

Traceability: Automated tests should be linked to
specific requirements, ensuring traceability from
application function to test cases and test results.

Automating the computer system validation process

GAMPS5 (2022) Automated Testing Guidance

Best Practices for Implementing Automated
Testing

Start with High-Value Tests:

Prioritize automating tests that provide the most
value, such as critical functionality, high-risk areas,
and repetitive tasks.

Maintain Test Suites: Regularly update and maintain
automated test suites to ensure they remain
relevant and effective as the application evolves.

Train the Team: Ensure that the team is well-
trained in writing and maintaining automated tests.
This includes understanding the tools, frameworks,
and best practices for automated testing.

Commitment to Automated Tests = ensuring
compliance with regulatory requirements —> all
while supporting the flexibility and responsiveness
that Agile methodologies promote.

GAMP®5 Categories

The process of assessing system components
applies the GAMP software categories and
hardware categories as input to establishing the
required activities, based on how the system is
constructed or configured.

The updated appendix in GAMP 5 emphasizes
several key changes to categorization:

Component Integration: Computerized systems are
typically composed of various components that
span different categories, which should be
considered as a continuous spectrum rather than
discrete groups.

Risk-Based Scaling: The categorization of
software is one aspect of a broader risk-based
approach where the scale of life cycle activities is
determined by the system’s overall impact on good
practices (GxP), its complexity, and its novelty.

This scaling is influenced by how critical the
business process supported by the system is.

LEAN

Software Categories: Despite a broader focus,
software categories help determine the necessary
rigor in supplier assessments and testing.

The ISPE GAMP®5 guide categorizes software into
different types, each with specific considerations
for validation based on their role and impact.

Each category requires a different level of scrutiny
and validation based on the potential risk to GxP
processes.

Category 1 includes basic software like operating
systems, middleware, and tools for network
monitoring and security in IT services. While
generally reliable and indirectly tested through
application testing, critical tools like those for
password management should undergo specific
risk assessments to decide if additional controls
are needed.

(There is no Category 2)
Category 3 - Standard

These are off-the-shelf components that may
require minimal configuration. Their validation
depends on the extent of their configuration and
their impact on GxP processes.

Category 4 — Configured

This category involves software that can be heavily
customized to fit specific business processes. The
validation process is more rigorous here due to the
potential risks introduced by custom
configurations. Supplier assessments and thorough
testing of the configured application are critical to
ensure functionality and compliance.

Category 5 — Custom

These are tailor-made solutions designed to meet
specific needs of a regulated company. They carry
a high risk due to the lack of prior user experience
and potential for undetected errors. Rigorous
functional risk assessments and validation are
crucial here.

the computer system validation process

Chapter 3
Automated Computer Software Assurance (ACSA)

Modern ACSA Implementation

Automated Computer Software Assurance (ACSA) represents the next evolution in ensuring system compliance
and reliability through automation. This chapter explores the practical implementation of ACSA, providing technical
details and a step-by-step guide to integrating an ALM system with a Selenium platform.

The diagram below illustrates a modern ACSA implementation, highlighting the integration points between an
Application Lifecycle Management (ALM) system and a Selenium-based automated testing framework. This model
is used by many of the top life science manufacturers today. Key components include requirements management,
test case creation, test execution, and result reporting. As Al testing automation matures, testing models will shift
to a fully integrated solution which has all requirement, reporting, and testing functionality in one place.

ALM

Application
clpliigzilie Test Automation

Requirements Platform
Test Scripts @
Test Runs

Defects

Combined ALM &
Test Automation
Platform

©#:

What It Takes to Implement ACSA

e Requirements Management:

o Define and document requirements within the ALM system.

o Ensure traceability from requirements to test cases.

Test Case Development:

o Create automated test cases using Selenium.

o Ensure test cases cover all critical requirements and regulatory needs.
Integration Setup:

o Establish integration between the ALM system and Selenium.

o Configure tools for seamless communication and data exchange.

Test Execution:

o Execute automated tests via Selenium.

o Monitor and log test results within the ALM system.

Reporting and Documentation:

o Generate detailed test reports.

o Maintain documentation for regulatory compliance and audit purposes.

Automating the computer system validation process

Step-by-Step Guide on Integrating an ALM System with a
Selenium Platform

This guide provides a concise yet comprehensive framework, starting with environment preparation and
progressing through defining requirements, developing test cases, configuring integration, executing tests, and
reviewing results.

By establishing secure communication between the ALM system and Selenium, mapping requirements to test
scripts, and automating test execution and result logging, organizations can enhance compliance, ensure thorough
validation, and streamline their testing processes.

Step 1: Prepare the Environment

¢ [nstall and configure the ALM system.

e Set up Selenium and required libraries.

e Ensure both systems can communicate securely.

Step 2: Define Requirements in the ALM System

e Input system requirements into the ALM tool.

e Establish a hierarchy and relationships between requirements.

Step 3: Develop Automated Test Cases

e Write Selenium test scripts to validate requirements.

e Store test scripts in a version-controlled repository.

Step 4: Configure Integration

e Use APIs or middleware to connect the ALM system with Selenium.

e Map requirements in the ALM system to corresponding Selenium test cases.
Step 5: Execute Tests and Record Results

e Run Selenium tests from within the ALM system or through an integrated interface.
e Capture and store test results in the ALM tool.

Step 6: Review and Report

e Generate reports from the ALM system detailing test execution and results.
e Ensure reports include traceability from requirements to test outcomes.

Technical Architecture - Overview of the Technical Stack

e ALM System: Manages requirements, test cases, and traceability.

e Selenium: Automates web application testing.

e Integration Layer: Facilitates communication between the ALM system and Selenium (e.g., custom scripts,
APIs).

Integration Points Between ALM and Selenium:
1.Requirements Linking:
o Establish direct links between ALM requirements and Selenium test scripts.
2.Test Execution Management:
o Trigger Selenium tests from the ALM system.
o Capture execution status and results automatically.
3.Result Logging and Reporting:
o Log test results back into the ALM system.
o Generate compliance reports showing test coverage and outcomes.

Conclusion:

Implementing ACSA requires a detailed understanding of both the technical components and the integration points
between the ALM system and Selenium. By following the outlined steps and leveraging the provided architecture,
organizations can achieve efficient and compliant automated testing processes.

In the next chapter, we will delve into implementation of a regulatory case study using a CMMS/EAM application.
This will demonstrate the practical benefits and outcomes of ACSA implementation.

LEAN .com

Automating the computer system validation process

Triggering a Test Case from ALM and Executing
in Selenium with Jenkins

Integrating an ALM system with Selenium using Jenkins allows you to trigger test cases from the ALM, execute
them in Selenium, and capture the results. Here's a detailed guide on how to set this up.

Prerequisites

e ALM System (e.g., ALM, JIRA, Azure DevOps)

¢ Jenkins installed and configured

e Selenium WebDriver and test scripts

e Source code repository (e.g., GitHub, Bitbucket)

1. Setup in ALM System

Define Test Cases and Requirements:

e Create and document test cases in your ALM system.

e Ensure each test case has a unique identifier (e.g., Test ID).

Configure Webhooks or API Triggers:

e Configure the ALM system to send triggers (e.g., via webhooks or REST API) to Jenkins when a test case
needs to be executed.

Example Configuration for JIRA:

¢ Install and configure a Jenkins plugin for JIRA.

e Set up a webhook in JIRA to trigger Jenkins jobs based on specific events (e.g., issue transition to a specific
state).

2. Setup Jenkins

Install Necessary Plugins:

¢ Install plugins for ALM integration (e.g., JIRA Plugin), Git Plugin, and Selenium Plugin in Jenkins.

Create a Jenkins Pipeline Job:

e From the Jenkins dashboard, create a new Pipeline job.

¢ Configure the pipeline script to handle test execution.

Pipeline Script Example - Appendix A

3. Execute Test Case from ALM

Trigger Jenkins Job from ALM:

e When a test case is ready to be executed, the ALM system triggers the Jenkins job, passing the test case ID as
a parameter.

Example using JIRA:
e Transition the JIRA issue to a state that triggers the webhook.

e The webhook sends a request to Jenkins with the test case ID.

Webhook Example - See Appendix B

LEAN

Automating the computer system validation process

Triggering a Test Case from ALM and Executing
in Selenium with Jenkins

4. Jenkins Executes Selenium Tests

Test Execution in Jenkins:

e Jenkins receives the trigger with the test case ID.

¢ Jenkins checks out the latest code from the repository.

¢ Jenkins sets up the environment and runs the specified Selenium test case using Maven or any other build tool.

Maven Command Example:
o The -Dtestld=${params.TEST_ID} parameter is passed to the Maven command, which filters the tests to
execute based on the provided test ID.

5. Capture and Report Test Results

Publish Test Results in Jenkins:

e Jenkins publishes the test results using JUnit or TestNG plugins.
e Test results are stored and displayed in Jenkins for review.

Update ALM System with Results:
e Configure post-build actions in Jenkins to update the ALM system with test results.
e Use Jenkins plugins or custom scripts to send the test results back to the ALM system.

Conclusion

By integrating Jenkins with an ALM system and Selenium, you can create a seamless pipeline where test cases are
triggered from the ALM, executed in Selenium, and results are automatically captured and reported back to the
ALM.

This setup enhances efficiency, ensures continuous compliance, and provides quick feedback on test outcomes.
The next chapter will focus on a regulatory case study, demonstrating the practical benefits and outcomes of
ACSA implementation.

LEAN

Automating the computer system validation process

Chapter 4 - Regulatory Compliance and Technical
Case Study for a CMMS System

Functional Aspects of a CMMS System

A CMMS typically manages maintenance activities, schedules, and records. Key functionalities include:

e Work Order Management: Creation, assignment, and tracking of maintenance tasks.

¢ Asset Management: Tracking and managing physical assets, including their maintenance history.

¢ Preventive Maintenance Scheduling: Automating maintenance schedules based on time or usage triggers.
¢ Inventory Management: Managing spare parts and inventory levels.

¢ Reporting and Analysis: Generating reports for compliance, performance analysis, and decision-making.

These functionalities directly relate to compliance by ensuring that maintenance activities are documented,
tracked, and executed according to regulatory standards.

Regulatory Requirements - 21 CFR Part 11 Requirements Applicable to a CMMS System

21 CFR Part 11 outlines the criteria under which electronic records and electronic signatures are considered
trustworthy, reliable, and equivalent to paper records and handwritten signatures. For a Computerized
Maintenance Management System (CMMS), the following requirements are particularly relevant:

¢ Validation: Ensure that the CMMS can perform its intended functions consistently and accurately.

o Audit Trails: Implement secure, time-stamped audit trails to record the actions taken in the system.

¢ Security Controls: Establish strict access controls to prevent unauthorized access and data manipulation.
¢ Electronic Signatures: Ensure electronic signatures are unique to an individual and cannot be reused.

o System Documentation: Maintain detailed documentation of system configurations, validations, and usage.

Mapping Requirements to Automated Test Cases
The table below maps key 21 CFR Part 11 requirements to corresponding automated test cases:

Automated Test Case

Regulatory Requirement CMMS Functionality Pesa e

Verify that work orders can be created,

Validation Work Order Management assigned, and tracked accurately.

Ensure audit trails are generated for

Audit Trails Asset Management
asset updates.

Test that unauthorized users cannot

Security Controls User Access Management access or modify the system.

Validate that electronic signatures are
Electronic Signatures Work Order Approval required and verified for work order
approvals.

Check that system configurations and
System Documentation Reporting and Analysis usage reports are accurately generated
and stored.

LEAN

Automating the computer system validation process

Technical Walkthrough - Creating a Simple Test
Suite for a Sample CMMS Application

Step-by-Step Instructions and Code Example

1.Set Up the Environment
o Install Selenium WebDriver.
o Set up a CMMS application (use a demo or
sample application).
2.Write Test Cases
3.Execute Tests and Capture Results
4.Set up the test suite in Jenkins.
5.Configure Jenkins to execute the Selenium tests
and capture results.
6.Review and Report
7.Generate and review test execution reports in
Jenkins.
8.Ensure results are logged and mapped to
corresponding requirements.
9.Provide Screenshots to Guide Readers
10.Insert Screenshots Here
11.Screenshot Descriptions:
12.Login Page of the CMMS application.
13.Work Order Creation Form.
14.Success Message after Work Order creation.
15. Jenkins Job Configuration for test execution.
16. Test Execution Results in Jenkins.

Implementing ACSA with a CMMS system ensures
compliance with 21 CFR Part 11 by automating
validation processes and enhancing system
reliability.

By following the steps outlined in this chapter,
organizations can achieve significant time and cost
savings, improve test accuracy, and streamline their
compliance efforts.

This hands-on project provides a practical example
of setting up and executing automated tests,
demonstrating the tangible benefits of an integrated
requirements management and automated testing
system.

Example Test Case 1: Verify Work Order Creation

import org.openga.selenium.By;

import org.openga.selenium.WebDriver;

import org.openga.selenium.WebElement;

import org.openqga.selenium.chrome.ChromeDriver;

public class CMMSWorkOrderTest {
public static void main(String[] args) {
// Set up WebDriver
System.setProperty("webdriver.chrome.driver”,
"path/to/chromedriver");
WebDriver driver = new ChromeDriver();

// Navigate to CMMS login page
driver.get("http://cmms-demo-url/login“);

// Log in to CMMS

WebElement username = driver.findElement(By.id("username"));
WebElement password = driver.findElement(By.id("password"));
WebElement loginButton = driver.findElement(By.id("loginButton"));
username.sendKeys("admin");

password.sendKeys("admin123");

loginButton.click();

// Navigate to Work Order creation page
driver.findElement(By.id("create WorkOrder")).click();

// Fill out Work Order form
driver.findElement(By.id("workOrderTitle")).sendKeys("Test Work
Order");
driver.findElement(By.id("workOrderDescription")).sendKeys("This is
a test work order.");
driver.findElement(By.id("submitWorkOrder")).click();

/I Verify Work Order creation
String successMessage =
driver.findElement(By.id("successMessage")).getText();
if(successMessage.contains("Work Order created successfully")) {
System.out.printin("Test Passed: Work Order created
successfully.");
}else {
System.out.printin("Test Failed: Work Order creation failed.");

}

/I Close the browser
driver.quit();

Automating the computer system validation process

Summary

This document has guided you through the essential steps of implementing Automated Computer Software
Assurance (ACSA) using Selenium integrated with an ALM solution.

We touched upon:

e The value of Automated Testing by explored how automated testing can save time and costs, increase
test coverage, and improve accuracy. Real-world case studies highlighted the substantial benefits,
demonstrating reduced manual testing hours and enhanced compliance.

e CSV and CSA Key concepts of Computer System Validation (CSV) and Computer Software Assurance
(CSA) were introduced, along with their risk-based approaches. We also discussed recent updates to
the GAMP5 model and relevant regulatory requirements.

e Automated Computer Software Assurance (ACSA) Practical implementation details of ACSA were
provided, including integrating an ALM system with Selenium. This section covered everything from
setting up the environment to executing tests and logging results, emphasizing the technical stack and
integration points.

¢ In the Regulatory Compliance and CMMS Case Study, we identified 21 CFR Part 11 requirements for a
CMMS system and mapped these to automated test cases. The benefits of a fully integrated
requirements management and automated testing system were discussed, including significant time
and cost savings. A hands-on project guided you through creating a simple test suite fora CMMS
application.

Investing in modern CSV practices is an investment in your organization’s future, ensuring you stay ahead
in a competitive and regulated industry.

Ready to advance your automated testing?

Book a call with our experts to discuss how we can help you implement ACSA and achieve your compliance
goals.

Book a Call: [Link to Schedule a Call]

LEAN

www.leanbiologix.com

(508) 541-6383
Inquiries@leanbiologix.com

Automating the computer system validation process

Appendix A

pipeline {
agent any
parameters {
string(name: 'TEST_ID', defaultValue: ", description: 'The ID of the test case to execute’)
}
stages {
stage(‘Checkout’) {
steps {
git url: 'https://github.com/your-repo.git'
}
}
stage('Setup Environment') {
steps {
sh 'source setup_environment.sh'
}
}
stage(‘'Run Tests') {
steps {
sh 'mvn clean test -Dtestld=${params.TEST_ID}'
}
}
}
post {
always {
junit 'target/surefire-reports/*.xml’
}
success {
script {
// Update ALM system with test results here
/] e.g., update JIRA issues or HP ALM
}
emailext (
subject: "Test Successful: ${params.TEST_ID}",
body: "The test case with ID ${params.TEST_ID} has passed.",
recipientProviders: [[$class: 'DevelopersRecipientProvider']]
)
}
failure {
emailext (
subject: "Test Failed: ${params.TEST_ID}",
body: "The test case with ID ${params.TEST_ID} has failed. Please check the Jenkins console output for details.",
recipientProviders: [[$class: 'DevelopersRecipientProvider']]

LEAN

www.leanbiologix.com
(508) 541-6383
Inquiries@leanbiologix.com

Automating the computer system validation process

Appendix B

{

"name": "Trigger Jenkins Job",
"url": "http://your-jenkins-url/job/your-pipeline-job/buildWithParameters?TEST_ID={{issue.key}}",
"events": [

"jirazissue_updated"

1
"jqlFilter": "project = YOUR_PROJECT AND status = Ready for Testing",
"excludeBody": false

}

Cost & Time Higher Volume M

Efficient of Tests - . '
BIOLOGIX —
Automated Testing Benefits

AN I 7/

Comprehensive _)
; Better Insight

Reporting p g

’I A —\
o Better Accurac Continuous o (‘2’) o
4 Quality é " g

LEAN

www.leanbiologix.com

(508) 541-6383
Inquiries@leanbiologix.com

